Introdução à Análise Funcional – Espaço de Hilbert (exercício 3)

Questão Mostre que, para uma sequência $$(x_{n})$$, em um espaço vetorial munido de produto interno, se…

Álgebra Linear – Matrizes – SVD (exercício 1)

Questão Seja $$A\in M_{m\times n}(\mathbb{R})$$. Prove que $$\sigma_{1}=sup_{x,y}\frac{y^{T}Ax}{||y||_{2}||x||_{2}}$$, para $$x\in\mathbb{R^{n}} e $$y\in\mathbb{R^{m}}$$, onde $$sigma_{1}$$ é o…

Álgebra Linear – Matrizes – Autovalores (exercício 2)

Questão Seja H uma matriz hermitiana. Prove que: (a) Se $$H = A + iB$$, com…

Álgebra Linear – Matrizes – Autovalores (exercício 1)

Seja A uma matriz hermitiana de ordem $$n$$, com coeficientes complexos. Defina $$r(x)=x^{*}Ax$$. Prove que $$max_{||x||=1}\{r(x)\}=max\{\Lambda(A)\}$$.…

Introdução à Análise Funcional – Teorema de Banach-Steinhaus (exercício 1)

Sejam E espaço de Banach, F espaço normado e $$T_{n}$$ ∈ $$\mathcal{L}(E, F)$$, tal que $$T_{n}(x)$$…

Álgebra Linear – Ortogonalidade da Matriz de Householder

Questão Prove que a matriz de Householder, $$H=I-\frac{2}{|u|^{2}}\cdot u\otimes u^{T}$$, é uma matriz ortogonal. Observação: O…

Álgebra Linear – Sistemas Lineares Homogêneos(Teorema)

Teorema: Seja uma matriz $$A\in\mathcal{M}({\mathbb{R}})_{m\times n}$$, com $$m<n$$. Então o sistema linear $$Ax=0$$ admite uma solução…

Introdução à Análise Funcional – Espaços Métricos (exercício 2)

Exercício Seja $$d: M\times M\longrightarrow \mathbb{R}$$ uma função tal que $$d(x,y)=0 \Longleftrightarrow x=y$$ e $$d(x,z)\leq d(x,y)+d(z,y)$$.…

Introdução à Análise Funcional – Espaços Métricos (exercício 1)

Exercício Dada uma sequência de pontos, $$(x_{1},…,x_{n})$$, num espaço métrico $$(S,d)$$, prove que $$d(x_{1},x_{n})\leq d(x_{1},x_{2})+…+d(x_{n-1},x_{n})$$. Solução:…

Álgebra Linear – Transformações Lineares (exercício 8)

Questões anteriores Exercício Seja $$\varphi$$ um operador linear, sobre o espaço vetorial $$V$$, tal que $$\varphi^{2}=I_{d}$$…