[Cálculo Diferencial/Integral I] – Limites de Funções Trigonométricas

Funções Trigonométricas e Teorema do Confronto Teorema 1: As funções $$sen(x)$$ e $$cos(x)$$ são contínuas em todos os pontos de seus domínios. Teorema 2 (Limite Fundamental): $$\lim_{x\to 0}\frac{sen(x)}{x}=1$$. Teorema 3 (Confronto): Sejam as funções $$f(x)$$ , $$g(x)$$ e $$h(x)$$ bem definidas em seus domínios, de tal modo que $$f(x)\leq h(x) …

[Cálculo Diferencial/Integral I] – Limites Laterais

 Definição de Limites Laterais Consideramos uma função real $$f:A\longrightarrow \mathbb{R}$$, com $$A\subset\mathbb{R}$$, um intervalo. Definição: Dizemos que a função tem limite à direita, e que o limite é igual a $$L$$, no ponto $$x_{0}\in A$$, se, dado ε>0, existe δ>0 tal que, se $$ x_{0}<x<x_{0}+\delta\Longrightarrow |f(x)-L|<\epsilon$$. Escrevemos, portanto, $$\lim_{x\to x_{0}^{+}}f(x)=L$$. Este …

[Cálculo Diferencial/Integral I] – Integração por Partes

Acheguem-se, amigos, à nossa página e estudemos o tópico deste post: Integral por Partes. A primeira coisa é recordar-se da fórmula da derivada do produto de funções deriváveis. Sejam $$f,g$$ funções reais deriváveis (diferenciáveis), definidas em um subconjunto dos números reais. A regra do produto garante a igualdade a seguir …