Álgebra

Álgebra Linear – Operador Adjunto (exercícios 2)

Questões Anteriores Exercício Seja $$f^{*}:\mathbb{R}\longrightarrow E$$ a adjunta do funcional linear $$f: E\longrightarrow \mathbb{R}$$. Prove que $$v=f^{*}(1)$$ é vetor de $$E$$ que corresponde a $$f$$ pelo isomorfismo do teorema da representação de Riesz. Prove ainda que $$f(f^{*}(1))=|v|^{2}$$ e $$f^{*}(f(w))=<w;v>v$$, para todo $$w\in E$$. Solução: Da propriedade adjunta, $$f(w)\cdot 1 = Leia mais…

Por Plenus, atrás
Álgebra

Álgebra Linear – Operador Adjunto (exercícios)

Questão Seja $$A:E\longrightarrow F$$ uma transformação linear entre espaços vetoriais de dimensão finita munidos de produto interno. Prove: i) Se $$A$$ é sobrejetiva, então $$AA^{*}:F\longrightarrow F$$ é invertível, e $$A^{*}(AA^{*})^{-1}: F\longrightarrow E$$ é uma inversa à direita de $$A$$. ii) Se $$A$$ é injetiva, então $$A^{*}A: E\longrightarrow E$$ é invertível Leia mais…

Por Plenus, atrás