Álgebra

Álgebra Linear – Transformações Lineares (exercício 7)

Questões anteriores Exercício Se os vetores $$v_{1},…,v_{m}\in E$$ geram um subespaço vetorial de dimensão $$r$$, prove que o conjunto dos vetores $$(\alpha_{1},…,\alpha_{m})\in\mathbb{R}^{m}$$ tais que $$\alpha_{1}v_{1}+…+\alpha_{m}v_{m}=0$$ é um subespaço vetorial de $$\mathbb{R}^{m}$$ com dimensão $$m-r$$. Solução: Definimos a transformação linear $$\phi:\mathbb{R}^{m}\longrightarrow E$$ com $$\phi((\alpha_{1},…,\alpha_{m}))=\alpha_{1}v_{1}+…\alpha_{m}v_{m}$$. Note que subespaço imagem de $$\phi$$ é Leia mais…

Por Plenus, atrás
Álgebra

Álgebra Linear – Transformações Lineares (exercício 5)

Questões Anteriores Exercício Seja $$E$$ um espaço vetorial de dimensão finita. Dado um operador linear $$A:E\longrightarrow E$$, defina o novo operador $$T_{A}:\mathcal{L}(E)\longrightarrow\mathcal{L}(E)$$, pondo $$T_{A}=AX$$, para todo $$X\in\mathcal{L}(E)$$. Prove que $$T_{A}$$ é invertível se, e somente se, $$A$$ é invertível. Solução: i) Partiremos da informação de que $$A$$ é invertível. A Leia mais…

Por Plenus, atrás
Álgebra

Álgebra Linear – Transformações Lineares (exercício 4)

Questões anteriores Questão Sejam $$A,P: E\longrightarrow E$$ operadores lineares não-nulos tais que $$AP=0$$. Prove que existem vetores não-nulos $$u\neq v$$ com $$Au=Av$$. Solução: Existe $$x\in E$$, não-nulo, tal que $$P(x)\neq 0$$. Seja $$\lambda$$ um escalar não-nulo. Teremos $$P(\lambda x)\neq P(x)$$. Por outro lado, da hipótese, $$A(P(x))=A(P(\lambda\cdot x))$$; reescrevendo noutras palavras, Leia mais…

Por Plenus, atrás
Álgebra

Álgebra Linear – Transformações Lineares (exercício 3)

Questões anteriores Questão Seja $$C(A)$$ o conjunto dos operadores lineares $$X: E\longrightarrow E$$ que comutam com o operador $$A\in\mathcal{L}(E)$$, isto é, $$XA=AX$$. Prove que $$C(A)$$ é um subespaço vetorial de $$\mathcal{L}(E)$$ e que, para $$X,Y\in C(A)$$, tem-se $$XY\in C(A)$$. Solução: Sejam $$X,Y\in C(A)$$. Façamos a operação distributiva à direita: $$A(X+Y)=AX+AY$$. Leia mais…

Por Plenus, atrás
Álgebra

Álgebra Linear – Operador Adjunto (exercícios)

Questão Seja $$A:E\longrightarrow F$$ uma transformação linear entre espaços vetoriais de dimensão finita munidos de produto interno. Prove: i) Se $$A$$ é sobrejetiva, então $$AA^{*}:F\longrightarrow F$$ é invertível, e $$A^{*}(AA^{*})^{-1}: F\longrightarrow E$$ é uma inversa à direita de $$A$$. ii) Se $$A$$ é injetiva, então $$A^{*}A: E\longrightarrow E$$ é invertível Leia mais…

Por Plenus, atrás
Álgebra

Álgebra Linear – Transformações Lineares (continuação)

Questões Anteriores Questão Seja $$E$$ um espaço vetorial de dimensão $$n$$. Para todo $$k\in\{2,3,…n\}$$, exiba um operador linear $$A:E\longrightarrow E$$ tal que $$A^{k}=0$$, mas $$A^{j}\neq )$$, para $$j<k$$. Solução: Podemos trabalhar com a permutação de coordenadas de vetores da base, uma ação do grupo permutação neste espaço vetorial. Caso $$n=2$$. Leia mais…

Por Plenus, atrás
Álgebra Linear

Álgebra Linear – Base e Dimensão (Exercício 2)

Questão Sejam $$u,v\in E$$, vetores linearmente independentes. Dado $$\alpha\neq 0$$, prove que o conjunto de dois elementos $$\{v,v+\alpha u\}$$ é uma base do subespaço gerado pelos vetores $$v,v+u,v+2u,…$$. Solução: Podemos escrever os vetores do referido conjunto, para algum$$k\in\mathbb{N}$$, da forma: \[v+ku=av+b(v+\alpha u)=av+bv+b\alpha u\]. Com os escalares reais $$a$$ e $$b$$. Leia mais…

Por Plenus, atrás
Álgebra Linear

Álgebra Linear – Base e Dimensão (Exercício 1)

Questão Seja $$E=F_{1}\oplus F_{2}$$. Se $$\mathcal{B}_{1}$$ é uma base de $$F_{1}$$, e $$\mathcal{B}_{2}$$ é uma base de $$F_{2}$$, prove que $$\mathcal{B}_{1}\cup\mathcal{B}_{2}$$ é uma base de $$E$$. Solução: Seja $$\mathcal{B}_{1}=\{w_{1},…,w_{k}\}$$, e seja $$\mathcal{B}_{2}=\{u_{1},…,u_{r}\}$$. Da hipótese, sabemos que todo vetor $$v$$ de $$E$$ é escrito de maneira única como soma de $$w\in Leia mais…

Por Plenus, atrás
Álgebra Linear

Álgebra Linear – Subespaços Vetoriais (Exercício 3)

Questões Anteriores Questão Sejam $$F_{1}$$ e $$F_{2}$$ subespaços vetoriais de $$E$$. Se existir algum $$a\in E$$, para o qual $$a+F_{1}=F_{2}$$, prove que $$F_{1}\subset F_{2}$$. Solução: Por definição, $$a+F_{1}=\{a+v; v\in F_{1}\}$$. Assim, $$a+0=a\in F_{2}$$, pois $$0\in F_{1}$$ (subespaço vetorial). Além disso, $$a+v+w\in F_{2}$$, para todo $$w\in F_{2}$$ e $$v\in F_{1}$$. Em Leia mais…

Por Plenus, atrás