Análise Matemática

Introdução à Análise Funcional – Espaços Métricos (exercício 1)

Exercício Dada uma sequência de pontos, $$(x_{1},…,x_{n})$$, num espaço métrico $$(S,d)$$, prove que $$d(x_{1},x_{n})\leq d(x_{1},x_{2})+…+d(x_{n-1},x_{n})$$. Solução: Provemos que a desigualdade é válida para $$n=4$$, com a Desigualdade Triangular. Com efeito, sabemos que: $$d(x_{1},x_{4})\leq d(x_{1},x_{2})+d(x_{2},x_{4})$$; $$d(x_{2},x_{4})\leq d(x_{2},x_{3})+d(x_{3},x_{4})$$. Substituindo a segunda desigualdade na primeira, obtemos a expressão a seguir: \[d(x_{1},x_{4})\leq d(x_{1},x_{2})+d(x_{2},x_{4})\leq d(x_{1},x_{2})+d(x_{2},x_{3})+d(x_{3},x_{4})\]. Leia mais…

Por Plenus, atrás
Análise Matemática

Análise Matemática – Topologia da Reta – Conjuntos Abertos

Observação (notação para a vizinhança de um ponto): $$V_{(\delta)}(x)=\{p\in\mathbb{R}; |x-p|<\delta\}$$. Questão Prove que, para todo $$X\subset\mathbb{R}$$, tem-se $$int(int(X))=int(X)$$ e conclua que $$int(X)$$ é um conjunto aberto. Solução: Suponha que exista $$p\in int(X)$$ tal que $$p\notin int(int(X))$$. Por hipótese, existe $$\epsilon_{0}>0$$ tal que $$V_{\epsilon_{0}}(p)\subset X$$. Pela afirmação feita, ($$p$$ não é Leia mais…

Por Plenus, atrás
Análise Matemática

Análise Matemática – Sequências (exercício 1)

Exercício Se $$\lim_{n\to\infty}x_{n}=a$$, então $$\lim_{n\to\infty}|x_{n}|=|a|$$. Dê um contraexemplo, monstrando que a recíproca é falsa, salvo quando $$a=0$$. Solução: Por hipótese, sabemos que, dado $$\epsilon >0$$, existe $$n_{0}\in\mathbb{N}$$, para o qual, se $$n>n_{0}$$, tem-se: $$|x_{n}-a|<\epsilon$$. Sabemos que a seguinte desigualdade é válida: \[||x_{n}|-|a||\leq|x_{n}-a|\]. Portanto a sentença é mantida: Por hipótese, sabemos que, Leia mais…

Por Plenus, atrás