Álgebra

Álgebra Linear – Matrizes – Autovalores (exercício 4)

Questão Seja A uma matriz quadrada e ε > 0. Prove que as seguintes afirmações são equivalentes: a) $$\lambda$$ é autovalor de $$A+B$$, para alguma matriz $$B$$, com $$||B||_{2}\leq\epsilon$$. b) Existe $$||v||_{2}=1$$ tal que $$||A-\lambda I||_{2}\leq\epsilon$$. c) $$||(A-\lambda I)^{-1}||_{2}\leq 1/\epsilon$$. Demonstração: (a) implica (b): Por hipótese, existe $$u$$ tal que Leia mais…

Por Plenus, atrás
Álgebra

Álgebra Linear – Matrizes – Autovalores (exercício 3)

Questão Sejam $$d\in\mathbb{R^{n}}$$ com todos os seus valores distintos,$$ v\in\mathbb{R^{n}}$$ com todos os elementos não nulos e $$a\in\mathbb{R}$$, e defina $$A=\left(\begin{array}{rrr} D&v\\ v^{T}&a \end{array}\right)$$, com $$D=diag(d_{1},…,d_{n}$$. Se $$\lambda\in\Lambda(A)$$, prove que: a) $$D-\lambda I$$ é não singular; b) $$\sum^{n}_{i=1}\frac{v_{i}^{2}}{d_{i}-\lambda}=a-\lambda$$. Demonstração: 1) Cálculo do determinante de $$A$$. Pela definição, $$det(A)=\sum_{\sigma}a_{1i_{1}}\cdot …\cdot a_{n+1 Leia mais…

Por Plenus, atrás
Álgebra

Álgebra Linear – Matrizes – Autovalores (exercício 1)

Seja A uma matriz hermitiana de ordem $$n$$, com coeficientes complexos. Defina $$r(x)=x^{*}Ax$$. Prove que $$max_{||x||=1}\{r(x)\}=max\{\Lambda(A)\}$$. Prove o resultado análogo para o mínimo. Observação: $$\Lambda(A)$$ é o conjunto de todos os autovalores em módulo da matriz $$A$$. Solução: Pelo teorema espectral, decompomos a matriz na forma $$A=UDU^{*}$$, onde $$D$$ é Leia mais…

Por Plenus, atrás