Análise Matemática

Introdução à Análise Funcional – Espaços Métricos (exercício 2)

Exercício Seja $$d: M\times M\longrightarrow \mathbb{R}$$ uma função tal que $$d(x,y)=0 \Longleftrightarrow x=y$$ e $$d(x,z)\leq d(x,y)+d(z,y)$$. Prove que $$d$$ é uma métrica. Solução: a) Provaremos que $$d(x,y)>0$$, para $$x\neq y$$. De fato, utilizando as duas propriedades do enunciado, para $$z=x$$, temos: \[0=d(x,x)\leq d(x,y)+d(x,y)\Longrightarrow 0\leq 2\cdot d(x,y)\Longrightarrow 0\leq d(x,y)\]. Por hipótese Leia mais…

Por Plenus, atrás
Análise Matemática

Introdução à Análise Funcional – Espaços Métricos (exercício 1)

Exercício Dada uma sequência de pontos, $$(x_{1},…,x_{n})$$, num espaço métrico $$(S,d)$$, prove que $$d(x_{1},x_{n})\leq d(x_{1},x_{2})+…+d(x_{n-1},x_{n})$$. Solução: Provemos que a desigualdade é válida para $$n=4$$, com a Desigualdade Triangular. Com efeito, sabemos que: $$d(x_{1},x_{4})\leq d(x_{1},x_{2})+d(x_{2},x_{4})$$; $$d(x_{2},x_{4})\leq d(x_{2},x_{3})+d(x_{3},x_{4})$$. Substituindo a segunda desigualdade na primeira, obtemos a expressão a seguir: \[d(x_{1},x_{4})\leq d(x_{1},x_{2})+d(x_{2},x_{4})\leq d(x_{1},x_{2})+d(x_{2},x_{3})+d(x_{3},x_{4})\]. Leia mais…

Por Plenus, atrás