Álgebra

Álgebra Linear – Ortogonalidade da Matriz de Householder

Questão Prove que a matriz de Householder, $$H=I-\frac{2}{|u|^{2}}\cdot u\otimes u^{T}$$, é uma matriz ortogonal. Observação: O produto exterior é igual à matriz produto de coordenadas do vetor $$u$$, isto é, $$u\otimes u^{T}=[u_{i}u_{j}]$$, onde $$u=(u_{1},…,u_{n})\neq 0$$. Demonstração: Definição da matriz de Householder: $$H=\left\{\begin{array}{rc} 1-\alpha\cdot u_{i}^{2},&\mbox{se}\quad i=j,\\ -\alpha\cdot u_{i}u_{j}, &\mbox{se}\quad i\neq j. Leia mais…

Por Plenus, atrás
Geometria Analítica

Geometria Analítica e Vetores – Matrizes

Exercício Mostre que as matrizes $$A=\left[\begin{array}{cc}1&\frac{1}{y}\\y&y \end{array}\right]$$ em que y é uma número real não nulo, verificam a equação $$X^{2}=2X$$. Solução: Basta substituirmos os valores na equação indicada. $$A^{2}=\left[\begin{array}{cc}1&\frac{1}{y}\\y&y \end{array}\right]\cdot\left[\begin{array}{cc}1&\frac{1}{y}\\y&y \end{array}\right] = \left[\begin{array}{cc}2&\frac{2}{y}\\2y&2 \end{array}\right]=2\cdot\left[\begin{array}{cc}1&\frac{1}{y}\\y&y \end{array}\right]=2A$$.   Exercício Sejam $$A=\left(\begin{array}{ccc}1&-2&-1\\1&0&-1\\4&-1&0 \end{array}\right)$$ e $$X=\left(\begin{array}{c}x\\y\\z \end{array}\right)$$. Verifique que a) Verifique que $$xA_{1}+yA_{2}+zA_{3}=AX$$, sendo Leia mais…

Por Plenus, atrás