Álgebra

Álgebra Linear – Matrizes – SVD (exercício 1)

Questão Seja $$A\in M_{m\times n}(\mathbb{R})$$. Prove que $$\sigma_{1}=sup_{x,y}\frac{y^{T}Ax}{||y||_{2}||x||_{2}}$$, para $$x\in\mathbb{R^{n}} e $$y\in\mathbb{R^{m}}$$, onde $$sigma_{1}$$ é o maior valor singular da SVD. Demonstração: Pelo teorema da SVD, $$A=U\Sigma V^{T}$$Redução da expressão: \[y^{T}Ax=y^{T}U\Sigma V^{T}x=(U^{T}y)^{T}\Sigma (V^{T}x)\]. Poremos $$u=U^{T}y$$ e $$v=V^{T}x$$. Por hipótese do teorema da existência da SVD, as matrizes $$U$$ e $$V$$ Leia mais…

Por Plenus, atrás