Álgebra

Álgebra Linear – Matrizes – SVD (exercício 2)

Questão Seja $$A\in\mathbb{M(R)}_{m\times n}$$, e seja a sua decomposição SVD $$A=U\Sigma V^{T}$$, onde $$U=[u_{1}|…|u_{m}]$$, $$V=[v_{1}|…|v_{n}]]$$ e $$\sigma = diag(\sigma_{1},…,\sigma_{r})$$, com $$r=min\{m,n\}$$. Prove as seguintes afirmações: a) $$Av_{i}=\sigma_{i}u_{i}$$, para $$1\leq i \leq r$$, b) $$A^{T}u_{i}=\sigma_{i}v_{i}$$, para $$1\leq i \leq r$$, c) $$A^{T}Av_{i}=\sigma_{i}^{2}u_{i}$$, para $$1\leq i \leq r$$ d) $$AA^{T}u_{i}=\sigma_{i}^{2}v_{i}$$, para $$1\leq Leia mais…

Por Plenus, atrás
Álgebra

Álgebra Linear – Matrizes – SVD (exercício 1)

Questão Seja $$A\in M_{m\times n}(\mathbb{R})$$. Prove que $$\sigma_{1}=sup_{x,y}\frac{y^{T}Ax}{||y||_{2}||x||_{2}}$$, para $$x\in\mathbb{R^{n}} e $$y\in\mathbb{R^{m}}$$, onde $$sigma_{1}$$ é o maior valor singular da SVD. Demonstração: Pelo teorema da SVD, $$A=U\Sigma V^{T}$$Redução da expressão: \[y^{T}Ax=y^{T}U\Sigma V^{T}x=(U^{T}y)^{T}\Sigma (V^{T}x)\]. Poremos $$u=U^{T}y$$ e $$v=V^{T}x$$. Por hipótese do teorema da existência da SVD, as matrizes $$U$$ e $$V$$ Leia mais…

Por Plenus, atrás